《高等数学 B-微积分(一)》

本科教学大纲

课程编号: 160030410

上海立信会计金融学院

《高等数学 B—微积分(一)》课程教学大纲

一、课程基本信息

课程名称:高等数学 B-微积分(一)

英文名称: Advanced Mathematics (B)-Calculus I

课程编号: 160030410

课程类别:长学段-专业必修课

预修课程:初等数学

开设部门:统计与数学学院

适用专业:经管类专业(本科)

学 分:4

总课时: 60 学时 其中理论课时: 60 学时, 实践课时: 0 学时

二、课程性质、目的

微积分是经济管理类本科专业的学科专业课。本课程的教学目的是使学生掌握经济管理 学科所需的微积分基础知识,学会应用变量数学的方法分析研究经济现象中的数量关系,同 时通过本课程的教学,培养学生的抽象思维和逻辑推理能力,为后继课程的学习和将来进一 步的专业发展打好扎实必要的数学基础。

思政元素融入课程,引导学生树立正确的科学观,培养学生科学理性思维能力、创新思维能力、独立思考能力,解决实际问题能力,培养探索未知、追求真理、勇攀科学高峰的责任感和使命感;引导学生树立正确的人生观和价值观,了解数学发展史和数学文化,提升数学素养、弘扬中华文明、培养民族文化自信,以精神文明为切入点,科学育人、文化育人。

在大纲中,概念、理论方面用"理解"表述,方法、运算方面用"掌握"表述的内容, 应该使学生深入领会和掌握,并能熟练运用;概念理论方面用"了解"表述,方法、运算方 面用"熟悉"表述的内容,也是必不可少的,只是在教学要求上低于前者。

三、教学内容、基本要求、课时分配

	叙字的台、 整本安水、床町刀癿	课	! 则数分i	記
章节	教 学 内 容	总课时数	理论课时	实验课时
第一章	函数	6	6	0
第一节	集合			
第二节	映射与函数			
第三节	复合函数与反函数、初等函数			
第四节	函数关系式的建立			
第五节	经济学中的常用函数			
	基本要求:			
	掌握 :函数的表示法,基本初等函数的性质及其图形,			
	常用的经济函数,建立简单的经济问题中的函数			
	关系式。			
	理解:函数、复合函数、反函数、隐函数、分段函数和			
	初等函数的概念。			
	了解:函数的有界性、单调性、周期性和奇偶性。			
	重点难点:			
	重点:函数的概念、复合函数和反函数、基本初等函数。			
	难点: 分段函数。			
	思政教育 :通过各种构造方法(构造各种方程、函数、			
	图形、反例等) 培养学生的发散性思维能力和创			
	造性思维能力,使学生在不断的发现、类比、化			
	归、猜想、试验、归纳中提出对高等数学建构的			
	能力。			

第三章	导数、 	微分、边际与弹性	14	14	0			
第一节	导数概	既念						
第二节	求导法则与基本初等函数求导公式							
第三节	高阶長	异数						
第四节	隐函数	女及由参数方程所确定的函数的导数						
第五节	函数的	勺微分						
第六节	边际与	边际与弹性						
	基本要	要求:						
	掌握:	基本初等函数的导数公式、导数的四则运算法则						
		及复合函数的求导法则,反函数与隐函数求导						
		法,参变量函数的求导法和对数求导法。初等函						
		数的一阶、二阶导数的求法。边际与弹性的概念						
		及其经济意义。						
	熟悉:	简单函数的高阶导数,函数的微分。						
	理解:	导数的概念及可导性与连续性之间的关系,微分						
		的概念。						
	了解:	导数的几何意义,高阶导数的概念,导数与微分						
		之间的关系,一阶微分形式不变性。						
	 尾点	胜点:						
	:為重	导数的概念,导数的几何意义,求导法则,微分						
		的概念,高阶导数。						
	难点:	复合函数的求导法则,隐函数求导法,参数方程						
		所确定函数的求导法,边际与弹性。						
	思政教	汝育 :三次数学危机的解决让学生懂得危机与机遇						
		并存,只要坚持科学理念和正确方法,不断探求,						
		就能不断突破,战胜自我,迎来更大的发展。						

中值定理 洛必达法则 导数的应用 函数的最值及其在经济中的应用 基本要求: 掌握: 罗尔定理、拉格朗日中值定理的简单应用,用洛 必达法则求极限,函数单调性的判别方法及其简单应用,函数极值、最大值和最小值的求法及其经济管理问题中的简单应用。 熟悉: 用导数判断函数图形的凹凸性,求函数图形的拐点和渐近线,描绘简单函数图形。 理解: 罗尔定理、拉格朗日中值定理。 了解: 柯西中值定理。 重点难点: 重点: 三个中值定理,洛必达法则,函数的单调性、凹凸性与极值、最值的判定方法。 难点: 应用中值定理证明有关命题,洛必达法则。 思政教育: 1.凹凸性与拐点犹如人生成长的道路,前途是光明的,道路是曲折的,树立远大目标,坚定理想信念,把人生拐点视为一个个人生亮点,鼓励学生发扬百折不挠精神,为实现中华民族伟大复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成绩。	中值知	三理及导数的应用			
导数的应用 基本要求: 掌握: 罗尔定理、拉格朗日中值定理的简单应用,用洛 必达法则求极限,函数单调性的判别方法及其简 单应用,函数极值、最大值和最小值的求法及其 经济管理问题中的简单应用。 熟悉: 用导数判断函数图形的凹凸性,求函数图形的拐 点和渐近线,描绘简单函数图形。 理解: 罗尔定理、拉格朗日中值定理。 重点难点: 重点: 三个中值定理,洛必达法则,函数的单调性、凹 凸性与极值、最值的判定方法。 难点: 应用中值定理证明有关命题,洛必达法则。	中值知	E理	12	12	
基本要求: 掌握: 罗尔定理、拉格朗日中值定理的简单应用,用洛 必达法则求极限,函数单调性的判别方法及其简 单应用,函数极值、最大值和最小值的求法及其 经济管理问题中的简单应用。 熟悉: 用导数判断函数图形的凹凸性,求函数图形的拐 点和渐近线,描绘简单函数图形。 理解: 罗尔定理、拉格朗日中值定理。 了解: 柯西中值定理。 重点难点: 重点: 三个中值定理,洛必达法则,函数的单调性、凹 凸性与极值、最值的判定方法。 难点: 应用中值定理证明有关命题,洛必达法则。 思政教育: 1. 凹凸性与拐点犹如人生成长的道路,前途 是光明的,道路是曲折的,树立远大目标,坚定 理想信念,把人生拐点视为一个个人生亮点,鼓 励学生发扬百折不挠精神,为实现中华民族伟大 复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最 值。告诫学生不能沾沾自喜地满足现有成绩,要 不断奋发图强,方能突破自我,取得更辉煌的成	洛必边	公法则			
基本要求: 掌握: 罗尔定理、拉格朗日中值定理的简单应用,用洛 必达法则求极限,函数单调性的判别方法及其简 单应用,函数极值、最大值和最小值的求法及其 经济管理问题中的简单应用。 熟悉: 用导数判断函数图形的凹凸性,求函数图形的拐 点和渐近线,描绘简单函数图形。 理解: 罗尔定理、拉格朗日中值定理。 了解: 柯西中值定理。 重点难点: 重点: 三个中值定理,洛必达法则,函数的单调性、凹 凸性与极值、最值的判定方法。 难点: 应用中值定理证明有关命题,洛必达法则。 思政教育: 1. 凹凸性与拐点犹如人生成长的道路,前途 是光明的,道路是曲折的,树立远大目标,坚定 理想信念,把人生拐点视为一个个人生亮点,鼓 励学生发扬百折不挠精神,为实现中华民族伟大 复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要 不断奋发图强,方能突破自我,取得更辉煌的成	导数的	的应用			
 掌握: 罗尔定理、拉格朗日中值定理的简单应用,用洛必达法则求极限,函数单调性的判别方法及其简单应用,函数极值、最大值和最小值的求法及其经济管理问题中的简单应用。 熟悉: 用导数判断函数图形的凹凸性,求函数图形的拐点和渐近线,描绘简单函数图形。 理解: 罗尔定理、拉格朗日中值定理。 了解: 柯西中值定理。 重点难点: 重点: 三个中值定理,洛必达法则,函数的单调性、凹凸性与极值、最值的判定方法。 难点: 应用中值定理证明有关命题,洛必达法则。 思政教育: 1. 凹凸性与拐点犹如人生成长的道路,前途是光明的,道路是曲折的,树立远大目标,坚定理想信念,把人生拐点视为一个个人生亮点,鼓励学生发扬百折不挠精神,为实现中华民族伟大复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成 	函数的	的最值及其在经济中的应用			
必达法则求极限,函数单调性的判别方法及其简单应用,函数极值、最大值和最小值的求法及其经济管理问题中的简单应用。 熟悉: 用导数判断函数图形的凹凸性,求函数图形的拐点和渐近线,描绘简单函数图形。 理解: 罗尔定理、拉格朗日中值定理。 了解: 柯西中值定理。 重点难点: 重点: 三个中值定理,洛必达法则,函数的单调性、凹凸性与极值、最值的判定方法。 难点: 应用中值定理证明有关命题,洛必达法则。 思政教育: 1. 凹凸性与拐点犹如人生成长的道路,前途是光明的,道路是曲折的,树立远大目标,坚定理想信念,把人生拐点视为一个个人生亮点,鼓励学生发扬百折不挠精神,为实现中华民族伟大复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成	基本要	要求:			
单应用,函数极值、最大值和最小值的求法及其经济管理问题中的简单应用。 熟悉: 用导数判断函数图形的凹凸性,求函数图形的拐点和渐近线,描绘简单函数图形。 理解: 罗尔定理、拉格朗日中值定理。 了解: 柯西中值定理。 重点难点: 重点: 三个中值定理,洛必达法则,函数的单调性、凹凸性与极值、最值的判定方法。 难点: 应用中值定理证明有关命题,洛必达法则。 思政教育: 1. 凹凸性与拐点犹如人生成长的道路,前途是光明的,道路是曲折的,树立远大目标,坚定理想信念,把人生拐点视为一个个人生亮点,鼓励学生发扬百折不挠精神,为实现中华民族伟大复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成	掌握:	罗尔定理、拉格朗日中值定理的简单应用,用洛			
经济管理问题中的简单应用。 熟悉: 用导数判断函数图形的凹凸性,求函数图形的拐点和渐近线,描绘简单函数图形。 理解: 罗尔定理、拉格朗日中值定理。 了解: 柯西中值定理。 重点难点: 重点: 三个中值定理,洛必达法则,函数的单调性、凹凸性与极值、最值的判定方法。 难点: 应用中值定理证明有关命题,洛必达法则。 思政教育: 1. 凹凸性与拐点犹如人生成长的道路,前途是光明的,道路是曲折的,树立远大目标,坚定理想信念,把人生拐点视为一个个人生亮点,鼓励学生发扬百折不挠精神,为实现中华民族伟大复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成		必达法则求极限,函数单调性的判别方法及其简			
 熟悉:用导数判断函数图形的凹凸性,求函数图形的拐点和渐近线,描绘简单函数图形。 理解:罗尔定理、拉格朗日中值定理。 了解:柯西中值定理。 重点难点: 重点:三个中值定理,洛必达法则,函数的单调性、凹凸性与极值、最值的判定方法。 难点:应用中值定理证明有关命题,洛必达法则。 思政教育:1.凹凸性与拐点犹如人生成长的道路,前途是光明的,道路是曲折的,树立远大目标,坚定理想信念,把人生拐点视为一个个人生亮点,鼓励学生发扬百折不挠精神,为实现中华民族伟大复兴的中国梦而努力奋斗。 2.函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成 		单应用,函数极值、最大值和最小值的求法及其			
点和渐近线,描绘简单函数图形。 理解: 罗尔定理、拉格朗日中值定理。 了解: 柯西中值定理。 重点难点: 重点: 三个中值定理,洛必达法则,函数的单调性、凹凸性与极值、最值的判定方法。 难点: 应用中值定理证明有关命题,洛必达法则。 思政教育: 1. 凹凸性与拐点犹如人生成长的道路,前途是光明的,道路是曲折的,树立远大目标,坚定理想信念,把人生拐点视为一个个人生亮点,鼓励学生发扬百折不挠精神,为实现中华民族伟大复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成		经济管理问题中的简单应用。			
理解: 罗尔定理、拉格朗日中值定理。 了解: 柯西中值定理。 重点难点: 重点: 三个中值定理,洛必达法则,函数的单调性、凹凸性与极值、最值的判定方法。 难点: 应用中值定理证明有关命题,洛必达法则。 思政教育: 1. 凹凸性与拐点犹如人生成长的道路,前途是光明的,道路是曲折的,树立远大目标,坚定理想信念,把人生拐点视为一个个人生亮点,鼓励学生发扬百折不挠精神,为实现中华民族伟大复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成	熟悉:	用导数判断函数图形的凹凸性,求函数图形的拐			
了解: 柯西中值定理。 重点难点: 重点: 三个中值定理,洛必达法则,函数的单调性、凹凸性与极值、最值的判定方法。 难点: 应用中值定理证明有关命题,洛必达法则。 思政教育: 1. 凹凸性与拐点犹如人生成长的道路,前途是光明的,道路是曲折的,树立远大目标,坚定理想信念,把人生拐点视为一个个人生亮点,鼓励学生发扬百折不挠精神,为实现中华民族伟大复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成		点和渐近线,描绘简单函数图形。			
重点难点: 重点: 三个中值定理,洛必达法则,函数的单调性、凹凸性与极值、最值的判定方法。 难点: 应用中值定理证明有关命题,洛必达法则。 思政教育: 1. 凹凸性与拐点犹如人生成长的道路,前途是光明的,道路是曲折的,树立远大目标,坚定理想信念,把人生拐点视为一个个人生亮点,鼓励学生发扬百折不挠精神,为实现中华民族伟大复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成	理解:	罗尔定理、拉格朗日中值定理。			
重点: 三个中值定理,洛必达法则,函数的单调性、凹凸性与极值、最值的判定方法。 难点: 应用中值定理证明有关命题,洛必达法则。 思政教育: 1. 凹凸性与拐点犹如人生成长的道路,前途是光明的,道路是曲折的,树立远大目标,坚定理想信念,把人生拐点视为一个个人生亮点,鼓励学生发扬百折不挠精神,为实现中华民族伟大复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成	了解:	柯西中值定理。			
凸性与极值、最值的判定方法。 难点:应用中值定理证明有关命题,洛必达法则。 思政教育:1.凹凸性与拐点犹如人生成长的道路,前途是光明的,道路是曲折的,树立远大目标,坚定理想信念,把人生拐点视为一个个人生亮点,鼓励学生发扬百折不挠精神,为实现中华民族伟大复兴的中国梦而努力奋斗。 2.函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成	重点观	挂点:			
雅点:应用中值定理证明有关命题,洛必达法则。 思政教育: 1. 凹凸性与拐点犹如人生成长的道路,前途是光明的,道路是曲折的,树立远大目标,坚定理想信念,把人生拐点视为一个个人生亮点,鼓励学生发扬百折不挠精神,为实现中华民族伟大复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成	重点:	三个中值定理,洛必达法则,函数的单调性、凹			
思政教育: 1. 凹凸性与拐点犹如人生成长的道路,前途是光明的,道路是曲折的,树立远大目标,坚定理想信念,把人生拐点视为一个个人生亮点,鼓励学生发扬百折不挠精神,为实现中华民族伟大复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成		凸性与极值、最值的判定方法。			
是光明的,道路是曲折的,树立远大目标,坚定理想信念,把人生拐点视为一个个人生亮点,鼓励学生发扬百折不挠精神,为实现中华民族伟大复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成	难点:	应用中值定理证明有关命题,洛必达法则。			
理想信念,把人生拐点视为一个个人生亮点,鼓励学生发扬百折不挠精神,为实现中华民族伟大复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成	思政拳	饮育: 1. 凹凸性与拐点犹如人生成长的道路, 前途			
励学生发扬百折不挠精神,为实现中华民族伟大复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成		是光明的,道路是曲折的,树立远大目标,坚定			
复兴的中国梦而努力奋斗。 2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成		理想信念,把人生拐点视为一个个人生亮点,鼓			
2. 函数的极值是局部最值,而最值才是全局最值。告诫学生不能沾沾自喜地满足现有成绩,要不断奋发图强,方能突破自我,取得更辉煌的成		励学生发扬百折不挠精神,为实现中华民族伟大			
值。告诫学生不能沾沾自喜地满足现有成绩,要 不断奋发图强,方能突破自我,取得更辉煌的成		复兴的中国梦而努力奋斗。			
不断奋发图强,方能突破自我,取得更辉煌的成		2. 函数的极值是局部最值,而最值才是全局最			
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		值。告诫学生不能沾沾自喜地满足现有成绩,要			
绩。		不断奋发图强,方能突破自我,取得更辉煌的成			
		绩。			

第五章	不定积分			
第一节	不定积分的概念与性质	12	12	0
第二节	换元积分法	12	12	U
第三节	分部积分法			
第四节	有理函数的积分			
	基本要求:			
	掌握:不定积分的基本性质和基本积分公式,不定积分			
	的换元积分法和分部积分法。			
	理解:原函数与不定积分的概念。			
	了解 :原函数存在定理。			
	重点难点:			
	重点:不定积分的概念与运算法则,不定积分换元法和			
	分部积分法,求有理函数与部分无理函数不定积			
	分的方法。			
	难点:换元积分法,分部积分法,有理函数与部分无理			
	函数不定积分的方法。			
	思政教育: 用微积分发展史以及中国数学家的故事激励			
	学生努力学习,增强民族自豪感和责任感,提升			
	民族凝聚力。同时,通过串联不定积分与微分的			
	辩证互逆关系,让学生体会对立统一的哲学思			
	想,培养学生的辩证思维和逻辑思维能力。			
合计		60	60	0

四、课程考核

考核方式:考试; 期末考核形式:课程试卷闭卷(教考分离);

题型:填空、选择、计算、证明题和应用题等;

课程类别: ■必修(考试)课程

□除体育类、短学段开设、实践教学	类以外的必修(考查)课程
□选修课程	□体育类必修(考査)课程
□短学段开设的必修(考査)课程	□实践教学类必修(考査)课程

平时成绩考核项目参照表

考核项目	课堂表现	课外作业	阶段测验	期中测验	其他
	(含考勤)				
项目选择	√	√	√	\checkmark	
考核次数	20	15	2	1	
考核分值	20	30	30	20	

平时成绩考核评定依据与标准:

- 1. 课堂表现(含考勤):随机抽查考勤、课堂提问、参与讨论等20次,每次5分,满分100分,按20%的比例记入平时成绩;
- 2. 课外作业:作业共收 15次,随机抽 10次记分,每次满分 10分,满分 100分,按 30%的比例记入平时成绩;
- 3. 阶段测验: 在学期 1/4 和 3/4 节点处各安排 1 次阶段测验,每次满分 100 分,取两次成绩平均分,按 30%的比例记入平时成绩;
- 4. 期中测验: 在学期 1/2 节点处安排 1 次期中测验,满分 100 分,按 20%的比例记入平时成绩。

五、教材与参考文献

选用教材:

吴传生主编:《经济数学——微积分》,高等教育出版社,2015年11月第3版

参考文献:

- 1. 赵树嫄主编:《经济应用数学基础(一)——微积分》,中国人民大学出版社,2012 年 10 月第 3 版
- 2. 吴赣昌主编,《微积分》(经管类,上、下册),中国人民大学出版社,2012年12月 第四版
- 3. 吴传生主编,《经济数学一微积分学习辅导与习题选解》,高等教育出版社,2016年 1月第1版

本大纲自 2020 年 9 月起开始执行

制定人签名:曹毓飞教研室或专业负责人签名:徐爱荣2020年11月30日修订